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NATTONATL. ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL. MEMORANDUM NO. 1233

CONTRIBUTION TO THE PROBLEM OF FLOW AT HIGH SPEED *

By C. Schmieden &nd K. H. Eawalkl
OUTLINE

Part I. A Few General Remerks Covering the Prandtl-Busemsnn Method

Part II. Effect of Compressibility in Axielly Symmetrlical Flow around
en Ellipsoid

PRELTMINARY REMARKS

The authors regret that due to lack of time the following investlga-
tions could not be carried out to a more finished form. Especlally in
the first part it was intended to include a few further applicatlons and
to use them in the general considerations of thils part. In spite of the
fact that the intentions of the authors could not be realized, the
authors felt that it would serve the alims of the competitlon to present
part I in its present fragmentary form.

*Beitrage zum Umstromungsproblem bel hohen Geschwindigkeiten. "
Iilienthal-Gesellschaft fifr Luftfahrtforschung Bericht S 13/1. Teil,
1942, pp. 40-68. (Figures referred to in Part I are found immediately
after the appendix to that part.)
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PART I. A FEW GENERAL REMARKS
COVERING TEE PRANDTIL-
BUSEMANN METHOD

INTRODUCTION

For the solution of the problem of flow in the subsonic rangse,
two approximation processes are availeble, the Janzen-Rayleigh method
which, proceeding from the potential or the streem function, represents
the velocities in form of a progressive series of powers of the Mach
. number, and the Prandtl--Busemann method which, based upon the fundsmental
concept of the Prandtl rule, determines the velocities by an expension
in series according to a geometric paremeter characterizing the body
(references 1 and 2). Both methods supplement each other most opportunely
insofar ag the first is suited particularly for thick bodies, hence for
relatively small critical Mach numbers, while the second method works
best for slender body contours whose critical Mach numbers are close to
unity. Idttle 1s known so far ebout the limit of convergence of the
employed serles expansion of both methods; no proof has as yet been
given concerning the ceasing of convergence upon the reaching of local
sonic veloclty; however, it appesrs plausible from the construction of
the, at times very small, number of the explicitly computed terms of
the series. The flrst section of the present report utilizes the long-
known relation between velocity and stream density (oV) in order to
rrove that with the use of the stream function the differential equations,
which serve as basis for the practical calculation in both methods, lose
their meaning if the local sonic velocity ie exceeded anywhere in the
field of the flow. The fact that the solutions of these differentisl
equations obtained by iteration then become useless also, is not sur—
prising. In section 2 it 1s ghown that the expression employed by
Hantzche and Wendt for the stream function is not genersl enough and
therefore is likely to fail under certain circumstances, as for instance,
for the flow around an ellipse. The latter is discussed in detail and
on the basis of the results obtained the suppositions are given and made
Pplausible concerning the fact that the series expamsion of the velocities
computed by the Janzen-Rayleigh, or the Prandtl-Busemann method can be
made to agree by formal transformetion. Finally, in the concluding
gection, the arguments of the first two sections are evaluated for the
problem of convergence of the series expansion built upon the potentiel,
with special reference to a report by Gértler (reference 6).
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1. If one desires to treat a compressible flow with the 4differential
equation

Vye(e® = 8) + V(o2 = v8) - 2¥ uv = 0 (1)

of the corresponding stream function in the two-dimensional case, the
quantities a, u, v must be represented as functions of the
derivatives of V¥ 80 as to obtain a differential equation containing
only V¥ and its derivatives. In the analogous case of the potential
this transformation 1s very simple, since owing to

one immediately obtains

2 .2 2 _¢.2) - =
Opr(a® ~ 0,5) + 0py(a® —0,°) — 20,000, =0

> (12)

vhereby thls equation is obviously valid for all physically possible
velocities. But the use of the stream function in this insbtance involves
a characteristic difficulty which becomes mcst readily apparent through
elimination of the sonic velocity from equation (1). If n is the direc~
tion of the normal In a point of a stream line, the relation

D=oV =2 (2)
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exists between stream function V¥, velocity V, and stream
density oV, while for adiabatic flow

5l L
e, =1 -58-12 "g_‘g}ﬁ-l (3)
Po 2 \'017

ig veldid.

From (3) it 1s seen that p/p, decreases mcnotonically, with
increasing velocity; substituting ?3) into (2) it is apparent
that, while D increases at first with increasing velocity, that
on passing through the critical velocity -~ V = a¥ - it reaches a
naximum and in the supersonlc range for V approaching vmax it
decreages to zero again. The approximate course of D against V
ig shown in figure 1. To effect the required elimination of a,

¥ 1is used a8 function of D or S that is, the inverse of

the ebove function D(V), which will be, in order to be &ble to
meke practical celculations, the inverse of the form of a power
series

v = p{D) (%)

The problem is thus the following:
Given: a function D(V)

Required: the inverse of this function in form of a power
series (4), such that V=0 for D = 0.

This problem, as known, is solved by the Lagrange inversion formula.
This Lagrange series converges in a circular disk with the radius
Dyaxs in this case D, equals the value of D, for which

% = 0. This result, which is also clear from inspection of the

eketch, naturally holds also for the case where the lnverse function
is not developed at D = 0 but rather at some other point hetween

0 end Dpgy, &8 is done in the Prandtl-Busemerm method. The
radivs of convergence is then correspondingly reduced such that

the limit of convergence coincides with sonic boundary. The seame

]
helds -for the inverse functions u and v as functions of §M
X
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and Y hich are Becessary for the transformation of (1),

although in thie case the relations are not as clear as

for sonic velocity. If one substitutes such power developments
in (1) the validity of the thus cobtained diffeiential equation
for V¥ ceases on reaching sonic velocity. Consequently,one
should not expect the iterative solutions of the differentiel
equations to have significance once the sonic boundary is
exceeded In them. The seme applies to the Rayledgh methed when 1t
usss the stream function, as well as to the Hentzsche-Wendt
method, (developed on ‘the suggestion of Busemann) which improves
the Prandtl rule by succeseive approximation. Both methods use
the expension in powers of the velocity components, hence must
fell on reaching the sonic boundary.

It should be interesting to atudy this falluwre for an actual
gingle case. Consider the flow arcund the ellipse &t zero
incidence for which the Busemann correction is computed in
appendix I, equation (20). ZEven if the streem function computed thers

did retainits validity wvhen a supersonic zone, no matter how
small, has developed about the end point of the small axis,

the curve obteined by plotting g-l:-1 ageinst the circumference of

the ellipse would have to show & course ai skeuched in figure 2,
because of the relation between V &and gﬁ, gketched in figure 1.

>a
The guentity %}-\f would have to attain its maximum at the begimning

of the supersonic zone and then decrease monotonously to the end
point of the small axis. Actually %’ shows an entirely different

course (fig. 3). It increases monotomically with the arc length
for a supercriticael Mach number and numerically remains always

smeller than @_ . But to such & %\_p distribution there
on nex n

belongs, according to figure 1, for reasons of continuity, either
a pure subsonic or a pure supersonic flow, both of which are
impossible at a supsrcriltical Mach number and in the presence

of stagnation points.

In figure 4 the stream—density distribution %ii d.is‘bributior)

for sn ellipse of axis ratio 1/10 at three different Mach numbers
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is plotted ageinst the conventional perameter angle 49, that 1s

only the range of stream—density wvalues of interest here. It is

seen that the curve for the subcritical Mach number 0.80 runs below

the curve for 0.85, in the vicinity of the end point of the small axis,
hence, that the stream density Increases as yet with rieing Mach number.
M= 0.85 1is elmost exactly the criticel Mach number, conseguently,

the solution must fail et still larger Mach numbers. As a matter of
fact, there results for M = 0.90 the above sketched behavior of

the %‘E distribution; the soluticn is impractical.

Figure 5 serves to lllustrate the good ccavergence of the
Bugemenn method in the range of its velidity. For the same ellipse
as in figure 4 the stream density at the end point of the minor axis
ls agaln plotted as function of the Mach number in the range of
interest; the upper curve holds for the first step of the method,
the Prendtl rule, the lower curve for the second approximation. The
intersection of these curves with the stralght line of the sonic
boundsry gives the critical Mach number in the corresponding
approximation (hence M. = 0.74 and 0.78).

In connection with the foregoing arguments, however, another
value ia of greater interest, which can 2lso be taken from these
curves. The maximum stream density in first epproximation has the
th pV.b
value 0.598 s, 1in the second approximation the value 0.583 ,

poao poao

vhereas the true value naturelly coincides with the sonic boundery,

hence must be 0,578 _zlf%. Thus, since the rigorous solution should
o~o

vield a stream-density distribution which would have to approach the

sonlc boundary from below, et & criticel Mach number of around 0.51, the

plot Indicates that the difference between the first approximation and

the rigorous solution is largely cenceled out by the second step of the

method, so that the method converges quite well.

Moreover, it is pointed out that, at variance with the customary
terminology in the discussion of figure 4, the Mach number used as
critical Mach number is that corresponding to the maximum of the stream
density; for up to that Mach number the solution obtained by this
approximation has a meaning.
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2. The Hantzsche-Wendt calculations proceed from the following
assumption. If A 1s a parameter that characterizes the departure of
the profile form from a straiﬁht section profile (for example, thick-—
ness, camber, angle of attack) at zero incldence the stream function
can be represented by a power series in powers of A, the coefficients
of which are functioms of x and y:

%=y+g(xly) A+ h(xy) a8+ ., (1)

On the basis of this assumption it 1s possible to set up, by
means of comparison of coefficients, a recursive system of differential
equations for the functions of the individual powers of A which then
can be integrated as in the Janzen-Rayleigh method.

But while in the Ragleigh method the expansion of the stream
function in powers of M

w=w0+r42wl+th2+... (2)

is always possible, the expansion of ¥ in the form (1) is by no

means guaranteed a priori. On the contrary it will be shown thst it

1s not possible at least In the two cases cited here, the ellipse and
the ellipsoid of revolution both at zero incidence, but that sooner or
later terms of the form AV ln A must appear in these cases. If

that is the case it ceases to be possible to set up the recursive system
of equations as was done by Hantzsche~Wendt. The best procedure is
then as follows: The stream function is put in the form

v

5= Volagy) + ¥ (xy) + ¥(ny) + . . . (3)
Vo 1s the stream function In the undisturbed free stream, Vg + ¥y
represents the Prandtl approximation; the functions ¥, with v 22

vhich are assumed to satisfy the boundary condition ¥y =0 on
the contour, are kregulor in thé outsids domain and at #nfinity
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their derivetives vanish to & sufficient degree. It is further
agsumed that, apart from sufficiently small zones, sspecially
the immediate vicinity of stagnation points, the function ¥,
and its derivatives are small compared to all Wx end their
derivatives with subscriptse K < V., The question whether this
assumption is satiefied can be answersd cnly after calculation

of 'qfv'

The fact that the concevt of the order of magnitude 1s a
little vague, eepeclally since the vicinity of the stagnation points must
be excluded, lies in the nature of the problem and seems therefore
unavoldable; beslides no difficulties srose in the celculation
of actual cases. When limited to the second approximation the
new rule gives the same result in all the cages treated by
Hantzsche-Wendt, in particular, the expansion persmeters
agsumed in (1) are automaticelly obtained. But if V¥ can no
longer be represented by a power development of the form (1),
the differently constructed terms are covered by our formula.

The necessity of excluding the stegnation point vicinity from
the appraisal of the order of megnitude lies in the initiel step
of the method, the Prandtl rule, and has been voiced often enough
as principael objection ageinst this rule vhen stagnation points
exist. More accurate numerical checks (reference 3) have shown,
however, that the Prandtl rule gives a fairly close approximation
even in the vicinity of the stegnation points, although its
essumptions are by no means satisfled any longer. It is not
believed that this behavior ies due to & lucky accident. However,
the following supposition (unfortunately without proof) scems
reasonable:

If it wore possible to compute the series (2) to any high v,
this serics would in all probability converge absclutely, but
uot uniformly and would merely represent & rearrangement of
the Rayleigh series computed for the same contow:r to any high
powers of Mach mumber.

In other words, if each term in (2) is developed in powers
of the Mach number the formal rearrangement in series of these
powers gives the Rayleigh seriles.

If this supposition is correct, the Prandtl rule would be
legitimete also for the vicinity of the stagnation point in a
certain memner and would explain the surprisingly good epproxi-
mation of the rule at these points. Unfortunetely there iwm very
little materiel available to test this conjecture, which for
lack of time could be evalueted only in two cages, the ellipso
and the circular-arc profile with shock-free entry.
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In both cames the result of the examination was positive;
however, only the more interesting case of the ellipse is treatcd
here.

The Rayleigh epproximation up to the term with M® inclusive
is known (reference 4). The end point of the small axis, that is,
the maximum speed is

V. hﬁ"_g I 2,2 2
max _ __1 1 -g9gc _ 1+ ce)” l+0
12> o 4 € Iin

U 1+c{ 2 [ o 2q* 1-q°

: 2 '1 L2
- LI == ")
s l-0 < l+o

The develomment in powers of ¢ gives, up to the terms with el*

%=1+e+%—2-Le+e2+e3(-g-~l)+ehlnej (s)

On the other hand the second approximation computed by (1) or (3)
gives in both cases, I1f one develops in teims of Mach number and
bresks off with the term in M2,

v / 2\
—%ﬁ:l+€+gﬁ\€+€] (6)

80 that the terms, which are for € as wecll as for M are at
the most of the second degree, will be contained in both formulas.
The differences in the definltion of the Mach number - Rayleigh
refere to the velocity of sound at rest formulas (1) and (3) to
the free-stream sonic velocity - do not meke themselves felt as
yet in this approximation.

The third approximation in the appendix of the Busemann
method based on (3) was ﬁarried. only far enough to show the
appeerance of a term =~ 1ln ¢ It was not further carried out
because of the prohibvitive amount of cslcwlations reguired in order
to obtain the finel formulas from the final formula given tiere;
it can be seen that & term =~.3 12‘- must appeer too, which
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likewise implies thaﬁ sgreement of both _developmente is to be expected
for the terms ~M2 ¢* 1n ¢ and ~M2 e3.

3. The following conclusione are drawn with the use of the stream
function. The Prendtl-Busemann and the Janzen-Rayleigh method give
identical results, but only when both developments are carried out
completely. Each development represents a rearrangement of the other.
Both developments diverge 1f at eny point in the flow domain the locel
velocity of sound 1s exceseded.

But in both cases the velocity potential could be used instead of
the stream function, as is, in fact, done predominently in the Reyleigh
method. However, no case of flow past & body has been calculsted as
yet with the Prandtl-Busemann method, One of the llkely reasons for
this might be found in the complicated nature of the boundary condition
for the potential. Since the reduction of the differential equetion to
coefficients dependent on ¢ =alone 1s in this instance easlly achieved
for the entire physically possible speed range (as mentioned already
in (la)), no absolutely valid reason for a ceasing of convergence of
the solution on passing through the veloclty of sound can be found
from the differential eguation alone, owing to its nonlinsarity. But,
since the values of the velocity computed for ildentical conditions
from the stream function and the potentisl are identical in the domain
of convergence of the stream function, there is a strong susplicion that
the potential development itself ceases to converge at the same place.

In fact, all the calculation made by the Rayleigh method with the potential,
particularly those by lLamla (reference 5) for circle end sphere, indicate
that the obtained series cease to converge on reaching the sonic boundary,
so far as ouch a conclusion can be drawn at all from the few explicitly
known terms of these geries. Consolidating this result with those
obtained above for the stream function it may be stated with great
probability thet even the fourth method, -namely, the Prandtl-Busemann
method which uses the potentiael, has the same limit of converg:nce asz the
other three. This statement contradicts the result of a roport by
Goértleor (reference 6); therefore, a brief critical review of his report
will be given consequently.

Gortler used his method to compute the flow past a wavy wall where
supersonic zone of finite extent occurs. Against this result of Gbrtler
some serious obJections may be mades.



NACA T No. 1233

1. The problem of convergence of his develomment, of which
the first three terms are explicitly calculated, is practically
ignored.

2. A part of the coefficients of his first exemple is wrong,
according to a careful check and with the correct coefficients
the convergence beccmes definitely worse.

3. The curves of figures 1{a) and i{b) in his report are
constructed with the wrong coefficients. VWhether the correct
values of the constants elready bring the supersonic zone, small
by itself, to disappeerance could not be checked, unfortunately.

This is not the place to be polemical concerning Grtler's
report. That wae not our intention. However, the doubts have to
be brought to ettention, for his report doss not give a proof,
that with the develomment followed therein a solubion could be
obtained, whose range of validity would extend to a small region
of the supersonic domain.
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APPENDIX

CAJCULATION OF THE THIRD APFRORIMATION FOR THE ELLIPSE

In the genoral differential equatlon for the stream function
\Uu(ae - ) +\Ilyy(a2 - ve) - 2uwry, = 0 (1)

it is necessary, in accordance with the Prandtvl~-Busemann method of
the splitting off of the free-siream part U parallel to the
x-axig, to set

ueU+u) v e (2)

where the quantities carrying the subscript 1 aenote disturbance
quantities. The following 1s then rigorously velid (a; = velocity
of sound of free stream U)

a2=-1312-(tc--J.)Uu;,_-!:—é-—l"(\13_2+1r;|_2)

,
u2=02+2Uu1+u1; v2=v12 (3)

Wo write for abbreviation

Mal; ua———l—-—-‘:uauzaua-l (4)
% 1 -
Equation (3) substituted in (1) gives

WﬂEale—Uz‘(K+l)Uul-5-§—Lula'5-—'—l 2-,
'N’yy[ﬂle - -1 U‘ul -E—é—-lule --'L%—lvla]

'E\VH(U 'V'l + uy Vl) =0 (5)
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The ebbreviation \ = %l; v 8% gives for the subsonic zons
o

in second approximation the relation between the disturbance
velocities end the disturbance streem function V. (Owing to

Yoy =V g etc. the subseript 1 for V¥, is omitted hereafter
a6 there exists no danger of confusion.)

v =V F‘a‘py + gél'g“l‘\lfye {Fh (k+1) +u® (2 - K)] + ‘lr’xa}
2
Vl = °U\px - %& \!fx\py

Dividing (5) by 512 and moving all terms of higher order to
the right gives

) 2
\lfn(l-Ma) +WW=W3[(K+1)%;;+L§-ABL+E_%AIL]

2 %2
U - 2 v,2 Uv u v

(6) substituted in (7) gives

\E!n(l - M‘?) + Wyy = zl-—l-a’ [(K + 1) u2xyyxpzx + (K - 1) uaxlfy\l/yy

_ . . .
'”’xu’xy} +‘pu£;1fé{(“ + 1)‘11-),2 Lus (£ + 1) - 2ub(x - 1)

+2(2 '“ﬂ “'"}’xe ["‘ + 1) (ue- 1) + K - 1}}

2 =
Njyy'z%{z{ (x -l)\ny[u6 (k+1) - 20 ¢ -2) -2 (2 -"')J

.plfxe ! (B -1) (U2 - 1) +x + 1}1- Q\ny \!fx\'fy _17_?5 (2 u2 - 1) (8)

: j
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The flow pattern is now affinely distorted in the direction normel
to the flow by the Prandtl trensformstion

T by eunio Uy =Yg vy =t iy = L5 Y Yy = s
we further put

Vo) UpPx

end immediately omit the g_sterisk for WV, after which (8) gives
by multiplication with n

2y
avs :—g— gﬂw = (U - 1) [(K + 1) u® \bn\bgg + (& - l)\l’q W,.m

-2 Ygle, [+ 1 2 - 0 {42 \lfégi(lri+l)\lfn [+ ¢+ 1)
”

S e -1) - (2 - K)] +\l!§2 [;42 {x + 1) -2]?
, J

W %(u-l)m[:q (Wb &+ 1) - 22 (k - 2) -(2-K)J

[2<u-1)+2l} by wéw @2-1))

Next we put ¥ =\ +\l!2 +v3 -+ and determine iy, Vo, \p?

succeseively from (9) on the essumption.thnat ¢ is small'compered
to \IJO (free stream) V, smell relative to \lfl,\lf small

rolative to ¥, and 80 on. If the flow involves a body with

stagnation points, this assumption is certainly not fulfilled
in the vicinity of the stagnation points; in such a case it
must suffice to postulate the validity of the assumption outside
of & certein range from the stagnetion point and to check the
Justificaetion for the assumption on hand of the result of the
calculation. Discounting this difficulty for the Dresent, the
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conventional iteration method can be used in our case ag it was
used in the Rayleigh method. Thus it obtains for Il!l and \!!2

the following two differential equations
A\Vl = 0; AV, = (u2 - 1)

[+ 0 By Vpgee (- 0¥y g 2 ¥y | (o)

Substituting \l.rl in the remeining terms of the right-hend side
of (9) gives & pert of the right-hend side for A,; the rest of
the disturbance terms belonging to A'*l!3 are computed later.
Because \1!:]_,m = '¢l§§, the first part of the disturbance terms

beccmes
/

% (w2 - 1) ﬂ/léé{.ﬂllqa EK +1) p® - (g - l)J [ul‘ (g + 1)

-2uf G -0 - (2 0] VP2 (211 (ke D) e]}
- Wy 120 wlé‘l’:m (2 u2 - 1) (10)

Because A\jfl = 0, \l!l- can be regarded as imaginery pext of an
analytical function w({) ¢ = (& + in);

w=<Pl+i‘l’l; w'=%‘i=\!!ln+i\!il§

w" dew =V

5 Semeas

ag? "Nt iVaige

On denoting conjugate complex quaptities by & bver, all the combina-
tions of derivetives of V1 appearing above can be represented
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by imeginary parts of functions of { end L: w! = %%

-~

2¥ype¥ig = 9 (7wt 4" W)
2\D1§ wlgs J (w" w' - )

by Vig¥y, =9 o o2 - "28

P

Substituting (11) in (10) gives

Ai\ks = J (A Wt e 2 Bw'w % +¢Cw' W'a)

where

§WP-1@-p-7,8=202-1) (c+p)

C=%(u2-1) (¢ -B+7)

and

u,=[(n+l)u2-(h'.-1)] [u"(lc+1)-2p2(n-1)-(e-n)]

B=ufi(u® - 1), 0 +1)- 2 7=k (242 - 1)

(11)

(12)

?
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With the ebbreviation
o=(k+1) W¥-1)
the exuressiong for <, B, 7 end A, B, C can be further consolidated
a = (o + 2) [(u2-1)0+hp2-3_}
B=ulg-2; 7=k (2u?-1)

hence

A= (w2 - 1246 (o + 5)

=262 [(2 -1 @r (1625 04862 -] b0

-—

Cs%(ua-l}[(l-@-l)62+5(h2-1)0+8(2?42-l)j
. J

These terms are now supplemented by those obtained from the products
of \Ill and V¥, after insertion in the first bracket on the

right-hend side of (9); they are
/
# Lo = { Vyq Vogy * Ve Wlnn)
, -

-2 {\\Vlé‘l’%\‘ +¢2§\L&§ﬂ>‘
= '2 - 1 § 2 - - y

(» 1){w2nwl§§ L(n-i»l) e - (K l)J
= 2\}12§ Wléﬂ +‘qu {(ﬁ + 1) l-‘-e ‘yzéé"' (K' - 1) \pgrm-l

- éﬂfléwgq} | (14)

——t
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18
Now
\Uz = J (Wg, e (see also (20))
and
Weg = WE +W; Wy =1 (Wg -WE); W, =4 (gt - WED
Wegs Wi+ 2WeE+ WEE Wop = = Weg + 2 WeE - WET
Hence
\peégs(w§+w§);\u2“=.r(1w§—1wg) )
Vorq = J {1 wge- 1wgp;¢2§§= a‘(wu+ 2W§£+Wff) > {15)
Wa,m =J (- Wep + 2 Wpe - ww
and
'W
2\Vln=w'+ﬁ';2i\lllgaw' - W' > (158)
2\lllgﬂ =y + 9" 2 i‘Vl = ' - "
-

Subsgtituting (15) end (15s) in (1%} gives
2 , hat
¥, =9--;-1-J{[§u +1) W8 - (& - 1)_} (we - wg) (W -9

-2 (W wp) (v W) 4 EK +1) & - (k- l?:l(wﬁ.f. + WEp

(16)

(w! +w') -2 W!C -WED (w' - w')
+ e[(n +1) 62+ (8- 1)] weg (w' + W')}
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where it should be noted that {see also further below)

hw§£'=93—;—-]-'[c v w! o+ (o +4) v ?'j (17)

The right-hend side of (16) can be further simplified by the
previously used abbreviation o

(k+1) (BB ~1) =0y k +1) w2 -(k -1) =0c+2
(l«:+l)u2+a-1=c+ax

and with it the following representation is obtained for A&V 3

~

A21b3 = &2_2_'_;. J{(q (Wg w o+ WE ¥ o+ ngw' + WC§W')

- (o + 4) (wg %'+ WE w' - wggw' - W’gﬁ"')

2 . -
+ E—-L—-:-L- (o +2¢) (w' + %) La w et s (o+ ) W W {18)

Equations (12) and (18)together give the disturbance equation for
the third epproximation \lr3 in the sense of our iteration method.

If 2z 1s the coordinate of the image pleane which contains &
circle, ¢ the coordinate of the plane of flow, we get with R
es radius of the circle

2 2 2
§‘2+-—B'5w=R2'5'5.E<13€=B..__._5
s 9)
d P gy Ro® oy L E-?
J
dz 1A dZ ze ? d’g ZE-PE
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The transformation to image-plane circle coordinstes gives for W,

end W
T 52 W T 52 W dz dz
<“a§§)° <u5 %dﬁd_{,)

A\lfz

and

y B wo1lea (e I o (s 21::]
azaz 2 [2 dz (ag) dz+(o+ ! dz (Ej_é’d; (192)

hence with the observance of the boundary condition

2
2| 2
W o= }*__._'_.-.1.(3-5.2) g L (z-%%. 8 g2
8 (22 - &2) Re z z
-gx b (12, w -2
2 - (:-: Ra) =5 i, 9) (20)

To reduce the right-hend side of (12) and (18) to imege-plene circke
coordinates it is borne in mind that

e g g (n8) 8 w5 (BB
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Hence, after introducing W; from (12) ana (1.8)

+(ff-%)2 R -‘-‘H

- -4 a .8 . 4z
(0' + Ll») [d.i (m wlz + dz {'H’ ) le iz ‘*lz ’1§-.f12

dZ \'12 a¢ / dz
& O] el (8 Y

(21)

It is essential to note that expressions such as w' le 3

are functions of z and %, hence must be split up before
(21) can be integrated in the usual manner.

The function W, can be written (see also (20))

Wy =0y (z) € +&5 (z) Tr+fl>3 (z)

with
@l(z)= ;2(z)=(c+)' W
‘:’3(z)=-% w'2 -—E+-'— - (o + 4 w B2 '1
Hence
= v 1 =0 i . E—
Wy, =2y £ +9, T+ 03" (2); Wy =94 a_f"’?ﬁ
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and
wlié%:él +@2 vl = (p‘;l_i %%)=¢2 %%1
w! ”Eétzg:‘z’l Voo W

Correspondingly the expliclt expressions for
in equatlion (21)

L (drw,d2\dl .8 (gyedy dvw,d {2 y) 4w
dE(W M1z g)dz @ " 3 e agtaz AR
a forw gz §§=d_( ' 4z ;_L
dz Zdt)de  dz \ ag
d fyro.rdz\sdl, & » dz) at
-'-d.z(W 2 dg)wdz+dz( %3 d{)dz
W @ ! Qt 1 ) o dir!
1 dz gdz(ﬂ')+¢ z+¢-dz
d dz \ dw _ ag'dy dw
w b g ——— DT l—
dz(lz dg)dz (o + 4) dz dz df
. — 3_..
S Qw'oy dw'dl L0 v fr .o dE'> dt
Mz g, dzdz © 23z dz B dx az
4 -
Lotk oaw'? & Q-.(w az \ dw
2  dz dz az\lzag dz
_2
6 (5. +42YT dw, & (o1 a2\ 82 d (o1
=4 (o v dz & &z & (o,
az\"1 at/” az T az \*2 at/ az Tas\°'3

1233

the derivatires used



NACA ™ No. 1233

The following integrals must be calculated:

d.w L . _g »e E' . gl E' . 3 Q‘i d-‘
dz at dz} / az; /§ az; W az; 4 <2 ag

From (19) follows

§=22+-5.2.W 32@=_32-£12
z 2 dz 42
wis G o o B2 - 2% au' 2p (38 - 82)
at 22 - a2 4z (22 - 2)°

and elementary integration gives

]

dz dg U/ZQ(ZE-B,E) a2 2z + 8

z 2
/—ﬁd2=(32-a2) /L—;—a-dz=(32-a.2)<lnz+5%>
; \ 22

ﬁ dz = - (B2 - a2) / 2 4z a - (82 - B) (ln z - &2\ (22a)
; 222/ |

d.W dz = 2 (RE - 5_2) dg = - (32 = a2)2 Z
(2 - a?)2 2 2 - =2

1l 1,28
*+ 2a in zZ + 8
/! P 5
fraa-zoe o [Lrs
L %2

2 (B® - 4®)y
2 _ g2

2(3.
(22 - 2°) z

2
& &¥ g = (52 - a?)2 / de (B2 - o271, 3 ,,2-2

)
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with (22) and (222), (21) can be integrated, giving as particular
integrel of the nonhomogeneous equetion (215

. 2 _ 2% -
hW2*=Az:‘§C+BV'2'i+Cw'~(B———§—L JE-!-!"—ln-Z‘-——E)

2 2 a
3 a.2 a Z +
2_12 3 12
+ H——E— 2 (o + 2K) c(l‘!'-—ﬁ+1f-2-—-“)
——‘ Re_e?a / ;-_ _a—
+ (o + &) g4yt (B -2 /2,1 1nE-2)
&2 \\_Z L z G.__f
e ’ 2
volow?@'az L, (g4 u) ' 2 (12 - D) n Z + 25
dz df 2 dz af 2%

+
=
LS
Bl
r
o
+
ia
ol
L]
Pro
n
—
I+~
+
[
o
]
4
'\..F/
+
£
IS
=
—~
a
+
L._f__l

3 §2 2z 2a z
12 (R2 - o2)7 (B2 - a®)°/ 3
- (o +8)-0 v BE = 80F . (g4 k) ! & 2
- ‘ze-aa &2 '2-a2
1 1.2 -8 ot 4 & 93 F Lo+ bk 2
+ 5= 1n 2 a)+<I>31.r +&w ¢ + o Al
+(Re'a2)UW'-d‘w,-d=-§lnE--—2- -(c+h)-‘2‘3'g‘-§ﬁ
az af dz at 2

‘ o 2
- yﬁ-(g+h)ﬁ‘M(;+;—_lnz-:‘)J }(23)

The two terms multiplied by 1ln Z counteract each other, as should

be, as otherwise an impossible circulation could appeer in thias

epproximation. For large values of |z|] =R, WZ* behaves as g
r
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It ls adviseble to rearrange this expression:
%+ 2 1n .L'_%)

137 12 = 1
Wo¥ = gq WS¢ + 8w w+a.3w(z 2e.1 7 T n

2
+ 8 #! (1" + -;_'—a 1in ,z__;_g)+ a5 w2 " ga + ag wlw" (-%)

zZ Z +
12 13?3__ 12 Z o !
+ e @ ¥t ag W T §-+a9w _2_2_&2""310 3 ¥
ad 7
+3-llw“ﬁ'2+elegc'3ﬁ+ 5413\?"(22 -a.e-%) (24)

vhere the coefficients & to 3 follow in simple menner from
the coefficients of (23).

In order that Wo comply with the boundary condition Wp =0

- at the image-plane circle, suitable analytical functions of 2z and
z must be added to Wo¥, as they are homogeneous solutions of
(21). For exemple, the term w'3{ must be replaced by

13( % BE - _5,2_1 . & similer procedure must be used for the

¢ - z RZ ?

other terms. Certain terms are accampanied by new singularities

in the outside domain, which must be compensated for by adding

further suiteble homogeneous solutions complying with the

boundary conditions. Thus, the coefficlent of =7 must, in

order to satisfy the boundary conditions (at the gmage-plane circle

and at infinity) be substituted by

2 2 1 g2 1 z-5,1
- R™ - - in + =)
5.3( )(22 - 82 R - 22 22><2a zZ+ A z)

and in addition, for removing the singularities at T = ¥ ;B--,
the following function has to be added

_ . 2 -2
) 2 2 2 - R°Z L R
R® - a) in
‘«‘3 ( ( 2 - 2 EE .2 22)(2,,_2 R2 + a2 RO

W

+ }
m~|\)
+
ll-'
S
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2 2
R -
Since ;’2—"“"92' =€, & term ~ 1ln ¢ occurs;, the same 1s the case
+ A
for By, . If one transforms ell terms accordingly and mekes a few e

simplications, a solution of (21) is obtained which satisfies all
boundexry conditions and hes no singulerities in the outside domain.
This solution is Wp; its imaginary part repreasents the third

correction \II3 of the stream function:

WE'E'.LVG[i"s—a"" 3’2(%-.;2)]'*&2"'2 Re - 52)'(%_§2_)

. 2 _ .2 1z A 1 .. Z-&
(et )b b)
(2 ®p \/a 1
(22 - 82 B - o2 22><2a? e Re)
- - .2 1 - L_ g - a
%(Ra ) (-2 = 2 z2>( 1nz+a)

-f_% ___R g4
(‘2 2 g . g2 2)i_me+§_§>

z° - A - z
b 2 2
- u[a- b (L. { ofL . 22
+ 8g W' w' |z 55*'5 e‘:é 1—2-):) +&6W'w(22 ;h)
- 2 (g% - i-z z-B, a2 (1.
+17w(3 a?)(z 1:2>+a.8 '—f,j 3 §_+a(g f{é)

g 2 2
+ s w,e. - Re 2 - Q RE - a_2 ;'C - Z
89 (22 _ 2 Q. g2 z; %10 3( ) 22 . a2 R4 a2,2
v 2 () e B ) (2o g
11 2 pr) Ha 2 g2

= 2
T I S A z . .—Rz
+a13w z g2 (‘2 - a2 Rb -aQZe) 2

4
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with ~
W o= - R® - 3.25 =2 23 (B2 - +°)
22 - g2 (22 - a_2)3
2 2 |
O, =(x - 8] - < £, B )yorh =
3 2 (2 - 2)2\82 z g2 o2 - 2
: (258)
ok - (w2 -__a?)a 22 29 (o2 5° + B%)
U (2 - B2 (2 - WB)2
- g 822_&1" 2§°+h222+c+h—
2 (22 - 2) 22 (22 - e2)
S

as check it is easily seen that the residue of Wo of 2,

2
3 =t %— disappears, hence the singularity at these points in

(25) is only apparent; furthermore, in each term with 2z Z = r2
the factor R - 2 cen be removed, henco W, vanisheos for

l z ’ = lE ' = R; finelly that the expression vanishes to & sufficient
degree at infinity. Computing the normel derivative of ¢3 on

tho ellipse from (25) and developing especially for z = i R,
Z = - 1 R (the end point of the small axis) in powers of €, it
is apparent that:

(1) The development of all terms sterts with & term of the
tkird order in ¢; in particuler,at ao and ay, through the
logaerithm, a term ~¢3 (arc cos € - 1) or in third order

~e3 (-;- - 1) will occur that cannot be removed again by the terms
squelly proportionel to e3 arising from vy and \be-

(2) In and 4 an additive teim proportional to Hin e
occurs likewise for which the seame i1s true as in (1). Also this
term must enter in the finsl formula for the velocity in the
end point of tkhe small axis. The order of magnlitude of this term
is still sufficiently large for a emall but not too small ¢
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[

compered with texrms of the order e3 s thus it cannot be neglected
for this ordor of approximation.

It has thus been proved with this special exémple that within
the nown terms, the Rayleigh approximation and the Prandtl-Busemann

approximation give the uwame result.

Transleted by J. Venier
National AdvisoryCommlttee
for Aeroneaumntics
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Figure 4.~ Stream-density distribution along an ellipse (d:2 = 0.1) for
various Mach numbers.
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PART II. EFFECT OF COMPRESSIBILITY
IN AXIALLY BYMMETRICAL FLOVW

AROUND AN ELLIPSOID

The differential equation for an axially symmetrical irrotational
flow of a compressible gas 1s solved on the basis of the solution
of Prandtl's linearized equation as first approximation for the
cage of axially symmetrical flow around an elongated ellipsoid;
terms of higher than the second order in the interference velocities
are neglected. The mexlmum velocities of ellipsoids of various
thickness are calculated ln dependence of the Mach number and
the results are compared with those of GSthert (very slender
ellipsoids; reference 1) end Lemla (sphere; reference 2).

SYMBOLS

X, r, o cylindrical coordinates in compressible
flow

¥ = g%/t thickness ratio of body in the x-, r-
plane of flow

U* free-streem velocity in direction of
x-axls

0 =x,r =xfu coordinates in the incampressible
comparative flow

€ = dft thickness ratio of body in the o-, T -plane

2

U= EG' U* . free-stroam velocity in the o-, T-plane

P, 8 local density and sonic velocity of
campressible flow

Por 20 density and sonic velocity of air at rest

Pp_s e density and sonic veloclity at U

vV = py /poo density ratio

My = U*fa Mech number

2
TR l/ \/ l- Mm distortion factor
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u, v component of total veloclty of compres-
gible flow in x and r direction
W =u- U*, VeV disturbance velocity
O sy ' Tlow potentisl and Stokes' stream
function
&1, ¥ potentisl and stream function of
disturbence flow uy, vy
o] potential and streem function of the
00* Voo
free stream
[ elliptic coordinetes in the o-, T-plane
k scale factor of the elliptic coordinates
N =14/ 2 - pe elliptic coordinate of the ellipsoid with
thickness ratio ¢
-u/2
C =" 7 factor of the disturbance function
.._.,29___. -1 1n Mo+ 2
o< = 1 2 Ty - 1
K = cyfcy ratio of specific heats

I. RESULTS AND NOTES FOR THE APPLICATION OF THE FRANDIL RULE

TO ELLIPSOIDS OF REVOLUTION

In order to describe the flow around an slllipscid of revolution
¢ylindrical coordinates x, r, @ are introduced. The x-axis is
pleced in the free-stream direction, r 1is the distance from the
x-axis, and @ the angle of rotation. The flow yields the seme
pattern for each @ = conet; thus the differential equation of the

flow is independent of ¢ -
2% 2 @
" - X} . 2w _x
d)xx(l 2)+¢rr(1 7 | 2 dxetT =0
8 \ a
. / > (1)
us vg\ 2uv Yy
O N I L
. . \ : ]
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Y
A

@ 1s the potential defined by irrotationality, u and v are
the veloclty components in the x end r directions, and ¥ is
the Stokes stream function definsd by the eguetion of continuity.
If one substitutes the dlsturbance velocitiles

for VY instead of the total velocities in the equation, where

U* is the free stream in compressible flow, and expresses the

local sonic velocity & by the velocitles and the sonic velocity

A, of the flow, one obtains similer to Busemann {reference 3)

the disturbance stream function \lll =y - Y, for the two-dimensional

cage

' ¥
Vo (2 05 b B8 = 22 (e ayy e
&‘ -
+ 1-12 (K - l) \L’lrrq%z
V.2
B Q\lerw%*' _J%-
r
-
- (g - 1) n° wl;J (2)
X

% P
M, = -g— is the free-stream.Mach number, v = 5-9 the density ratio
(=] 0
at rest, (p = Po), end for free stream (p = poo). IT V¥ is
the stream function of the free stream =

U¥ = -uwmi (3)
r

amltting the second power terms in the derivatives of the stream
function on the right-hand side, there remains the linearized
differential equation of the axially symmetrical flow whose solution
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corresponds to the Prandtl appr ion. By distorting the x, r
plene with the factor p = 1/\/1 - M2

X=0 P=pT ()

the linearized equation gives the differential equation of the
incompressible ellipsoid flow, the solution of which 1s immediately
indicated. Substituting the solution \ul\l) of the homogeneous

equation in (2) on the right-hand side, the solytion of the now
inhomogeneous equetion will give a solution Wl 2) and

Uy =y, () ey () (5)

represents a higher approximation for the solution of the compressible
flow differential equation. The solution of the linearized
differential equation, that is, the first aporoximetion for the
compressible flow, is in elliptical coordinates (Lamb, reference k)

¢ = kin T =k\f1-¢2 \/nz -1 (6)

for an ellipsoid of thickness ratio ¢* and free-stream velocity

U* in the distorted o-, T-plane ¢ = F-'

VI ~
Ue -2 aluey, (D aci® (1 -3 <n2-l>(%ln£,‘-i'—%';a“":;>

with

. /2
C = U/ (7)
Mo 1., Mo *l
-l T3
"12"1 1]o

0O

For o = Mg = -/—:._l_.-—_-—é the coordinates o, T represent tha ellipsoid
11 - € .

of thickness ratio € and the first approximation of the velocity

u, follows from the solution \lfl( 1;



1Y

NACA TM No. 1233 37

i
“lP(l) = - U-2 v W—;L-—(l) = =D \l!_.]____(l)-r = - v "‘——'ﬂ—wl (l) (8)

The higher terms in the derivatives of the stream functlon are
neglected. If ome includes the square terms for the calculation
of the second approximetion, the first approximation

q;l(l) gives an additional term A “1(1) in the velocity wuy
of higher order

ul(l) = ulP(l) + A ul(l) | (9)

Substituting (7) in (8) gives the Prandtl epproximation for the
meximum speed ({ = 0) at the contour of the ellipsoid (n = 7,)
-

f. llnno“'l_
(l ,U*“Q__i ‘nQ“I o}
lun_r“x B NP P

> (10)
with

by
° 1 (%) 2

Neglec’cing the terms of higher order in € for thin ellipsoids
(e € 1) gives (asymptotic velues for n,-»1, first approximation)

e B
{_ ulP(lyUt} = ¥ én -f-f - 1) (11)
max

With the seme ommission in incompressidble flow

u:
1 _incompr. ~ 2
( o )m = %2 (1n = 1)

1This result of the first approximation can be entered at once
according to the Prandtl rule, when GSthert's form (1) is applied:
determine the Interference velocity in the incompressible flow at a
contour distorted with 1/i end multiplied speed by u=2.
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The ratio of the campressible to the incompressible maximum velocity
for en ellipsoid of small thickness ratio € thus is

2p .3 . 2
Bl compr. - In = ] 4 Dk (12)
Wy incompr./max ln%'l lng-l
€

Consequently, the ratio of the velocities for thin elllpsoids is
not unity in first epproximation. Reather en additional term

proportional to ln 4 1is obtained, which at higher Mach numbers
can be quite considerable even for small thicknesses. The value
of unity is attained in the limiting process to vanishing thick-
nees at fixed Mach number. ,Considering that the flrst approxi-
mation of the potential 1[;1(1) vy (7) is, like the velocity in

(11), proportional to €<, %’c is apparent fram (2) that the
additive stream function Y, 2) can contain only terms propor-
tional to cl*. Thus (11) certainly contains terms all proportional

to 62. For the gecond approximation of the meximum velocity at
the ellipsoid with

es abbreviation, one obtains the following result

ul'max = ul(l)m + ulce)max

with ) (13)

—

ulP(l;} mex A ul(l)max

ul(l)max =

-

Githert obtained e similar rosult lnp/ln 2, es is

apparent from the above when (In 2) - 1 1s neglected with respect
to 1n e. But such an omission is admissible only for oxtremely
smell €, because ln € = - 2.996 ig itself no longer greet
witl&lrespect to (In2) - 1 = 0.307, 8o that orrors of 10 percent
result. -
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where

2
(1) 2w M2 -1 _ -;.)
u = pe Uy —= G
1P max qo-(qoa-l) Qe \ Mo

denotes Prendtl's first approximation, while

| Tz - 1) (q. - 2)'2
R ML Vil [1+i§.(1+ nnmg,\ (- ) (% - 3,

o = (12 - 1) QOJ

'

and

—_— o . N
(2)11183! = % ul(- M@Q U* no 3

!

1

_J[J_+uz (1+Mm2)] ‘;—13@“
} 1 n=no

—
!

13 |

J "'on (14)

Jl—i

represent the additional portions of the second aporoximetions.

The expressions -]—'ﬂ,r (2 and -J=‘1’II11(2 are solely
1 I n=Ng 1 =Ng
dependent upon f, = 1/1/1 - (e#/u}?, thet is, on the ratio €*/u.
They are shown in figure 1 for sma..Ll Mo 2 1 and therefore irmedi-
ately available for every npractical example~ Mo is the lerger
thethicher the ellipsoid and the smaeller the Mech number. Even
at €* a2 0.5 and M, =0.3 7, is not lerger than 1.138, hence
etill a number close to 7, = 1.

Figure 2 shows the maximum velocity increments of the second

U*

thickness ratios e* plotted against the Mach nwrber. The range
of velidity of the curves is bounded by the cwrve of the critical
Mach number, on which the local velocity exactly reaches sonic
velocity. The heavy curves of the smscond app“oximation (ul/U*)

are compared with the first approximation F.l* (1) /U";I which

approximation (ﬁl/U*)max = 3——'—-‘-}1) on ellipsoids of various
max

max?
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follows from the first approximation of the stiream function 'Wl(l)

when neglecting the square terme in the derivatives of 1y1(1)-

This first approximation 1s represented by thin curves. To
i1llugtrate the magnitude of the two additional terms of higher order
the totel contribution by the linearized differential equation

[;l(l)/U;Lnax 1s included in dashed lines. It {s seen that the
additive term Auy 1) ontributes entirely too much and is
reduced again to the greater part by the term of the second approxi-

matlion ul(e).

In order to Judge the quality of the second approximation,
the maximum incremental velocities for the extreme case of the
sphere 4%/t = ¢*¥ = 1 are plotted in figure 3 and compared with
Lemla's values for the sphere at several Mach numbers. Since
Lamle referred the Mach mumber to the criticel velocity-of sound
n¥, the Mach numbers P = U*/e* were converted to the sonic
veloclty aw &t free-stream veloclty U* by the formule

2 _ w2 _ 2%
Mo =2 "% +D - & - D2

It is seen that Lamla's values computed in fourth approximation
by the Rayleigh method do not differ very much from the second
approximation computed here; hence it may be concluded that this
second approximation is surely sufficient for all wmrectically
encountered ellipsoids with thickness ratio up to ebout €% = 0.5.

Figure 4 represents the conditions for the incremental
velocities in compressible and incompressible flow eround bodies
of the same contour plotted &sgeinst the Mach numbe: for various
thickness ratios of the ellipsoid in first and second approximation.
Lemla's velues are included for comparison in dash-dotted lines.
Figure 6 contains the corresponding conditions for the total
veloclties u = wy + U¥ in second approximation. Figures 4 and 6
represent the final result of the higher ep_ roximation which goes
beyond the Prandtl rule. The compressible disturbance and total
veloclities of the second approximations are directly obtainable,
if the incompressible velues are taken from figwre 8.

In the ocslculation of the second approximetion of the ?tream
function and its derivatives the terms of the solution \Uln 2)
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were represented by infinite series which, for nd—aJ, tend

toward logerithmic limiting curves. If one replaces these series
for thin ellipsoids by their limiting curves and considers the
terms up to the order € one obtains for the incremental
velocity the esymptotic formula (second approximation)

ui) ’
_ =¥ (1 sy 1)
<;* mex (\n €%

L
f

f 2B )y o)  (9)

The asymptotic values for the pertial solutions \btn(a) and 'wlln(a)

employed here are indicated in figure 1. TFor the incompressible
case for p = 1 the asymtotic formula is tirue

. :
1 incompr. 2 .
<: u* :Zmax = ¢ (}n e* J')

o - 5 i _
22 2 .1
+£'2-l21n e -~ "3 (26)

Thus the ratio of interference velocities is

u: " v
(Eg;éﬁgua;-:) el 4+ ;nu + €% QE 1n? g% -2 ln? 2_
1. incompr. 2_ . € € *
- InS -1 aénae_*_l> i

2

- o) 2 .
+ gu_:E—a ln.f% + lnrz; -3+ 35 + E—f§—l (1 +g Ma?)
¥
- 2 2 2

ln?-l
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For the total velocity w = uj + U¥ the ratio is

Yeompr. ) 51+¢*21np+§—*-g-(p2-l)
“incompr-m 2u
2 2 2
-Eln%lnz-;+3<ln-e—;(_-l)+%—(l+x #8)
L .
5 2
+-2—-u—2-lnp(2ln%+m '3) (3.8)

The smell crosses indicate the asymptotic velues of the second
approximation for €¥ = 0.2 in figure 2; one can see that they
are still a little below the first approximation at small Mach
numbers, between the first and second approximation at medium

M, and then ebove the second approximation. Then they finally

approach the second approximation asymptotically at My—1,

since for p-—>c in Mo = 1 and thus n,— 1.
VA - (e*fnr?

Figure 5 contains, aside from the exact second approximation,
the values of the second epproximation camputed by the asymptotic
formula (1) for €¥* = 0.2, Thus the two second approximations
do not differ very much for smell thicknesses. If one neglectc
the terms of higher order in (17) one obtains the egymptotic
values {11l) of the Prandtl approximation corresponding to the
exact velues of the first approximation. One can see from
figure 5 that the exact values are too small, the asymptotic
values too high, hence their average is close to the second
approximation. The dotted curve in figure 6 represents the
asymptotic values of the first approximation for €% = 0.2
corresponding to (17) with neglect of the terms with e*l;
the dashed curve indicates the exact first solution.
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II. OUTLINE OF THE THEORETICAL DERIVATION OF THE RESULTS

(a) The Differential Equation for Potential and Stream Function

The continuity equation of a compressible medium for exially
symmetrical flow with locel density p and the local velocity

vector w 1is
(19)

div (pw) = 0

Expressed in cylindricel coordinates x, v, @ with w = (u, v, w)

it becomos
) 0 (20)

1 (Br u . Orpv . Spw

T\ & S

In the axlally symmetric case the flcw in every plane ¢ = constant
is the same, hence only the flow in ons X, r nlane needs to be
In this plane (w z O)

analyzed.
(21)

%x- (oru) + %; (prv) =0

Thus there exists a Stokes stream function VY with the property

Po

e}
v=.J:'.__\!j
rp 'x

°ls
<«
)

_u=-%

If the flow is irrotational, there exists in addition & flow

potential €, hence
u=90 3:;.2_0.\{{ v =0 =;EQ."$ (22)
X r p T T rp x
Thus from the disappearence of the rotation, rot y = 0, there
(23)

follows for the stream function

SR

pow‘) .o

o
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Moreover, by Bernouilli's equation

TQB ;23 = v
/p+2q_ b = Constent

with
q‘l uw + p / r q; r x _

and by definition of the sonic velocity 8% =4 p/d p the
relation follows

dp - L g2
2 =dlnp= = dq (24)

Substituting (24) in the basic equation (23) gives

() 3@t iBen i) e

with
2 g .
8lnp .. 1 3 rf_Q)zw________x * ¥y L _Q\ ‘px\vzx +\Vr‘l’rx+dlnp <

0/ -

3o, .22 (B__\‘_“;f_*‘_"__
I 92>2 (‘i’x‘l’xr + Vol "_{;2 +¥.2) 3 1n p g2
a2 ( 2 3 tr 2
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or better
7Y

-7

The basic oquation thus is

2
G‘ ) i'é-)@n * Vo -lxl-[): -%:2- [v(wu ) u‘l’rx\/ i u(v‘!’xr e

or

. 2 ' 2 Vs
u ¥ uy x
l - + - — - 2 ——— - = 0
\yxx ( aa) Yoy e?) & WXI‘ r

L5

(26)

(27

The differential equation for the potential is obtained in the seame

From the equetion of continuity (21) and the Pernoulli

equation (24) there follows

va(réx) +§;(r¢r) +r¢x§—%,—(n-9+r®ra—}n¥e=

with

a2
§_= -%é@rcrx"‘@x@n)

%))ln-

n

53‘: =- J:é(@r Qe Qx?rx)

=
[¢74

é_%a;_e=-2

%o
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Hence the differential squation for the potential is

o 4 o .
Qn"'crr"'}'r' "'a'é'(q’xq’r‘z’rx + 9% Oxx)

- 35(e,0 0

o rr ¥ O O rx)

or, shorter

- 2 Va ?.E‘
°’°‘<l ”@‘)"( ':.E)""f%%*r =0 (29

(b) Introduction of the Disturbance Velocities and Transformation
to Elliptic Coordinates in the Plane Distorted
" According to Prandtl

From the adisbatic equation p/p, = (p/po)K, K = 1.405 (air)
and the definition of the sonic velocity al = d;p/dp there
follows when the pressure is expressed by q_2 according to the

Bernoulli equation, 82 = a, 2 . ---—-J= q_2 8o = sonic velocity of
the gas at rest.

By means of this relation the density can be expressed by
the disturbance velocities

W =u-U% vy =v

If &, 1s the velocity of sound at free-streem velocityé = U*
eand pe, the corresponding density, there follows with £2 =

()*;af

. 1
1 i} U* u Kk -1 ¢ 2 2\ ==
=g |1 (e -2) 230:21 - % —z (u "'Ul)" k-1
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or

— zvll+ + 1+k M +

P él' a2 2&@2 ( : °°>ul 1

o -
(29)

with H_*.a.::ME

2 ©

%o

Splitting off the contribution of the free-stream velocity in the
stream function there remains

= - l-._l a2
\!,-1]; +\;rlwith1y = EuU*.L
because

U*=-

H =

o)
Per =m0 ¥

Now the disturbance velocities can be expressed by the disturbance
stream function ;-

Fram
U* + -p_ol-.(\]; + = U* 180 _
U =T rler Tl oF Yy V5
5 - -
-EBMqu_M +—Ui'l(l°KM2)u12+v12,-E-9b
o) r © 2&2._ © _ o} r
1
follows with w2 = ——3
1 - My
lauua 1+-Ui;-; ir"'LLl‘(l'"'Mm)ul +v12‘
Ao 2!-‘,,
(30)
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Hence in first approximation
v v

If one substitutes this epproximation (30) in the terms of higher
order one obtains as the second epproximetion

Substituting these disturbance velocities in the equation of the
streem function (27}, and neglecting all terms of higher then the
second order one obtalns, with

\!Jr=-%-U*r+\ylr \lfrr':'%j‘"\[’lrr

and aaxaf-(n-l)U"’ul

—

a
W

Vixx

2-(K-l)U*ul-U*2-2U*u£l

+ Vg0 [&a? - {k-1) U ul‘| - 2U%vy V.

-‘%2[%2-&-1) U*u{l+3—-*v12=o
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or
-y 2 s1y e 2V -y B2 Yar
Vipex 1 Mm+(n+1)a2vu r}"’ﬂ’lrr 1+ {k 1)%504 =
© (=4

¥ 2
o] o
'?%r-[l'!'(ﬁ'l) %Upe%—\ao

Thus under consideration of the terms up to the second order the
differentlial equation of the disturbance stream function is

¥ Vi V1,2 Uq,2
2 - axr Tix | TIxZ . - 2V¥Yirs
+u (K-, 7 aymr+r2 (k -1)w 2

(32)
Distorting the coordinates according to Prandtl x =0 r = uT, one
obtaine, because of

W =2 Wy = fgv.,.,; Vig = Vgi

¥
Voo + ¥rr - ?1:‘=-“-U;- [:1?' (= Ly b+ (k- LV ¥
8 T |
¥ 2 Y2
- Ay, + e - (k- 1) —,Tr-] (33)

If ‘U(l) ies a solution of the homogeneous differentisal equation,
that is,

W (1)

(1) +'¢'T1’(1) - __i__ =0

Voo



the insertion of this solution as first approximation in the
right-hand side of (33) gives, with

v - w(l) . W(a)

for the correction to Prandtl's solution the inhomogeneous
differential equation

. (2) (1) 1)
1]100(2) + \!fﬂga) '\E:"(_' =" 12_1_1_"2‘_ wac \!’1-( F‘a e + 1) - (s - Jﬂ
a_ T

g

sy, (D) i’fﬁ) -oy @ t (34)

Since the solution () of the hamogeneous equaticn is given in
elliptic coordinates, (34) must be transformed to the new coordinstes.
The simplest wey ie achieved by not using the transformation (6)

but rather by mapping the o, T Dplane at flrst on an auxiliary
plane &€, © by means of the analytic function

o + 1T = k cosh (& + 18) (35)
The transition to elllptic coordinates is then glven by
1 = cosh & t =cos 6 (36)

The exlstence of the Cauchy-Riemann differential egquations for the
mapping (35) facilitates the trensformation considerably and

(seo also appendix, section a) the tramsformaticr By means of [36)
involves merely rewriting ~f- the result with the new notation.

The differentisl equation (34) attains then the form
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(12 - 1) ¥, (3 + (1 - £2) vee®

vU* 022 . 2 TP B
";32—“_(“2-;2)2(1 t2) E; (x + 1) - (= 1)‘l[q ¢

+3(TI2 - 1) -&D.?_(ﬂz_:}_{l[(HQ - ;2) nlnﬂ..’*'_%-enz“

- n® - ¢ L.
2|n2 -2 2 _ 42 k(g2 - 1) |
+ 2t + 2y -tc-1- (37)
712 -1 .n2 - §2 _‘

-—

{c) Solution of the Differential Equation

In order to solve (37), the equaticn ies broken into two s
differential equetions.

-1 4, B s @-@ P - ?ﬁé—:—-é—i—%—a-[c“ - 5202

2, .2 n+l___ 2 2 . v (2)
+ 3t +"]<lnn-l n2_,;2>("‘ Yo ey

- =) B Y <l ¢ N <o) (2 22
PO e (n? - %)3(n2-1)|£n &)

+2(n2 - 1) (g - 58202 + 39 4 92)} (38)

and dstermines one particular colution for each of the two. This
is accomplished by solving the equation for individusl terms on
the right-hand side until finally all terms on the right are
exhausted. In this way one.obta%ns as particular integrals, with
the simplification (1n x)2 = 1n°x
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3
Uy - - ft?'(n?n;;_:)g é')l‘a £2)
+'q%-:-‘§§ ('%“'“2‘*%7: (2 - 1) lng_j:-%)
- (1 - £2) ’:% (2 - 1) MQ%{_%+%-‘-’
#(39)

(2) _ 222 - 1) (1 - ()
Yoy (12 - t2)2

2 2]
1-t= - Aa+l),1lq,,05-1
+112“§‘2 (l kn +"lnn—1)+21nn2_§2

<ty |- 901 2 2 e+l
+ (1 ﬁ)[elrxq_l+8(n 1) In %L:_l""g]

o

This solution substituted in (38) gives exactly the termg on the
right-hand side. The indicated solution vanishes as 1/n° aside
from a constant at infinity, hence at infinity rallel flow is

attained. To satisfy the boundary condition W 2) . 0 at the
contour 1 = n,, solutions of the homogeneous diffsrential

equations must be determined which added to the nonhomogeneous
solution mekes the latter equal to zero, that is, cencels the
previously obtained terms (39) for 4§ = Mo+ This 18 accomplished

without difficulty for the terms of the form (1 - {2) o(y) eand

1 - !2
2 _ ¢ @(n), now we set up the equation
n -
= (1 - ga) -
v (2 - 3"

If the differentiel operator at the left-hand side of (38) is to
disappear, the condition



NACA T™ No. 1233 53

.Pne -1)¢" -2(n - 1)(2n - 1)%

+hn(n2-§2)[-n(n2-l) (P'+[(2n-l) ne-%‘? =0

o

will exist. For n = 0 the differential eguation is
(n -1) 0" -.290=0

that is,

®(n) =clt% (n® - 1) lnﬁ—f%'n]’fce (n2 - 1)

If n=1, both brackets must disappear, since the”solution
®(n) is to be independent of [ . The oquations ¢" = 0 end
ng' -@ = 0 arec both satisfied by @ = C3n Hence one obteins

a8 homogensoug basic solutions:

Yy o= (1 -89 (na-l),\!f2=(l'§2)l:%(n2-l)ln-%—i_'—%'ﬂ (ko)

and

ll!3=(l'§2);2_?_—§§

But for n =2 two differential equations are obtainod which heve
no common solution. Thus for tho terms of the type

1- 82
WQ ?(n)
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no closed solution complying with the homogeneous equation can
be given, because the second expression, also which can be
reduced to the first by differentation, ig of the same type.
These expressions must therefore be developed in terms of
functions which are solutions of the homogeneous equations.

The general solution of the homogeneous equation which disappears
for n—>, 1is of the form

c
v = Qe @ -t B e - 2plal

where Pp(f) and Q,(n) represent the spherical functions of

the firast and second type. Thus the above expreesions must be
developed in seriles of this type for n = To* A homogeneous

2

ne-1

solution which for 1 =3, assumes the value -~ % in g §2
Mo °

is obtained (appendiX, section b) by settingg‘p‘zﬂ)- = P,'(0),

aqn{n) ag
._.2_;].1. = Qn'(n)

S % bn + 3 %nsa (1)
W= £ G+ 1) (2 +2) ([ 2. 1)y, (o)

(1 - £2) Popey (0 (12 - 1) &y (W) (1)

Since this series converges absolutely and uniformly for 1 £ To
and ‘Il;; 1 (see appendix, section b) for n = N,

2 .3
1, o
\V(Tlo)='“ln

b 2 n02-§2

Differentlating twice with respect to n gives a new series with
the aid of which the second expression can be also represented
(eppendix s secticn b)-

o

(& <7
T- = Z (41’1 + 3) Q2n+l(no)
Z_ n=0 (Qoa - 1) Q'Qn.'.l (ﬂo)

(3 - §2)P|2n+l (t)(n® - 1) Q'Qn.,.l (n) (k2)



The serieos also converges unlformly end ebsolutely in the seme range apd two homogeneoua solutions
glve

(2)
*5("]0) = TJ:'—!‘C—Q n20 Z

ond, hence for N =0,

¥5(n0) = “03 .LS.__

- g2)2

Having thus the terms of the inhomogensous solution supplemented by hcmogeneous terms with
correspanding constants so that the expressions for 73 = N, 4isappear, these expressions are

then appropcriataly expanded in powers of 1 - Mo+ The first term then glves the derivatives
of the two parts of the stream function with regpect to n at 7 = No» Theeded for computing
the maximum velocities at the contour alone:

1 i, +1 R+ 1
2 o - 3 in 2o
3¥(2) ) Dl y  DEC IR (ng,0)
= - 4+ -
3 n=n g + 1 2 . 2 2 . 22
° %('102'1) ln,qc’_l-'q0 o 2 o ('lo c)
0
r
N, +1 n.+ 1 1 2
2 Pl g5 -2 2 - 3+ koS 4 gy
2,/ =(1-g2)|*‘h’*°“1 o PR TT A AE T s ‘
2 .2
oy =g -]r-(qe-l)lnnoq-l- Mo ¢ Ny
t are g = 1 K
o
(1)
2Fy (n, 8) o a v ¢
el - (43)
ne .2 {,}02-1) (-'302=§2) n-—ncj

£E3T *ON WT VOUN

e
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with

1 2y _
T (o) = 5053 - 3ng - = (62 - 1) (1,2 - ¢2) -t

_— 2)
- %’ (7102 - £2)2 [’g—n' (mOJ(nOE - 1)

end

(1) Q2n+l(“°) '
%Z aZ(’i-n + 3) (- 0 (n.) -3 Fons1 (‘t‘)q2n+l(n)
o n+l o

%Z(a) =) (b + 3)(2n + 1)(2n + 2)
%n,1(no}

(1e2 - 1) Ov‘2n-’-1 (no)

(l - ZE)P'Qn.'.l (;) Qen+3_(ﬂ)

The derivatives of the sgries follow from (41) and (42) when
observing the relation Fr [(q2 = 1) Q'(n)] = nln + 1) Q(n)

(reference 4). From the derivation of the stream function w(2)

2yt _ -%:%QCQkQ{Lue(K +1) - (k - 1) P_\L%?_)_= a\q[g(e)l

4

2 ult (no2 - 1)2
¢ ={;§U*/L 1 N + 1l2
-2 2. -0 = =
l}o 2 e l)ln"o'l_,

there results the velocity according to (31) by means of the
following relation for the ellipsoid center (¢ = 0)

o
.2 1 "’l.%gg-—» ._l__%llf

r (c =O) ke"l
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gince from (6) follows

0=k(§.rn+n§)@ K (.

<-'[7—'1'—:L-'”—§-2§T n2-1+-\1-§2\/—;—%@=0)k—;\/—;"'——-_—1—n~

.'by- differentiation, hence with T (2:3) k‘/ 712 -

Vg

T g:gk,/nz Y Cely* Yynr) = 1:'

The correction ul(e) for the velocity in the center of the
ellipsoid therefore is in first epproximation

i
1

Uy par(® N uuae\ylr@) - Mm2 N2 - 1 2
o* - (noe - l) Q
‘_2 (k +1) - (r - l)‘ / IIJI (2)/ (44)

Substituting in its stead the first approximstion \lzl-(l) in
(31) for the velocities, one obtains
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‘ : 2 2

\I’T(l) — L"bl_(.i'.)_ =g__ lnn°+l - 21}0 - l+22..__+_}_
- o -1 2 2

e no nO -1 no -3

=1,
L \(n? -1
= - &2. (QQ no) (no ) “lmax(l)
v fo = (0,2 - 1)q, U¥

v el
~ - %;Ifl +U2 Mw2<-rl) 1+

(Qo (ny2 - 1) ~
N/ o 2
= u2 °) +uhU"‘2Mw2ll +E- (1

o = (n 2 - 1)q

ﬂ‘”'l’z o
+ KR M, E‘o" (n? - 1) QOJE

- -
B’ 2
5 (L +8 M )l

(45)

The total interference velocity in the center of the ellipsoid is
thus

2 2
ulmaxg“( ;) Noc - 1 +u1“112 M- = 1 I{E
2
U* no - (2 = 1) Q Mg = (N2 - 1) QCH

1 2
+u2 (1 4k M@"’)J (Q.o . ?l,')
0O

e) . _
+|}+u2(l+n Mme)]YI‘?}El/n'*ﬂ‘l‘Eﬂ*(“‘/o (46)

Substituting in it the derivative of the stream function I!I (2)

according to (43), it is seen that in the practical evaluation of
the formulas only the calculation of the two infinite series
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offers any difficulties. The derivatives of the sphericel functions
Pn(f) can be given at once for £ = 0, when bearing in mind that

(¢ - 1) Py (¢) = n(tP, - Pq) (reference k)

one obtains

l P34 3 % 5 “ s e (211 - l)
Popey (0) = (20 + 1) Ppp(0) = (20 + 1) SREx6.. . %n (-1)®
_(.nynntlen +g._)
= (-2) o2n ( n (47)

The spherical functions Q, for small n are best computed by the
recursion formula

nq =(2n-1) 1,0, -1-(n-1) Qo
with
L8
Q =iiplet? r 09
o 2 no-l
Ql=ﬂ'°‘°'°‘l ~

whilo the derivative Qn' is obtained from the difference of two
Qnt

(1,2 - 1) Q' =n {1y @ = -1 (49)

> v(2)

(1)
The convergence of the series %ﬁz and 5;/_ grows worse

as the ellipsoid becomes more slender and the Mach number greater,
that is, the closer 7, approaches unity. Since these valuss are

of particular interest, a larger number of series terms must be
calculated. However, even in the calculation of le(e) to six
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velid digits by the recursion formule the initisl value Q(el to

2 -
20 digits must be exactly known, while, to obtain g-z_f ” )

for
three digits exact, Qp to Ql9 ie required. The higher Q,
with

n > 10 must therefore be determined by & well converging
series. As the conventional representation of tho Qn(no) as
power series in terms of %— converges very slowly a new
o
representation s hyper-gecmetrical serles is used, which
converges particularly well for higher n. (See appendix, secticn ¢).

The infinite series 5;5:( 1 g#l_( ) computed this

wey for a number of 1, valuss were approximaeted by curves, which
pess well through the calculated values for the individual ' 14

and for n,-»1 and no———}a>have the limiting vaelues of the

considered series (uppeniix, section 4, (79). The accuretely .Ccmpyted
values arc given in table I, the approximation curves in

{igure T.
TABLE I

CALCULATED VAIUES FOR THE INFINITE SERIES -

3 §(1) 35 | a7 |5 3@
3 : 1 8.

© - EL“ Q S— Qo anz"'

1 A I B -1 +4
1.25 -0. 495 237. 0.081 508 -.450 784 .OTh 192
1.5 -.219 561 -.125 578 ~.272 8k -.156 052
1.732 ~.126 722 -.120 631 -.192 Lh7 -.183 197
2 =.076 117 -.093 211 -.138 570 -.162 688
3 -.020 096 “,.033 401 -.057 98k -.096 375

A closer analysis of the behavior of the infinite series in the
1l yields as asymptotic representation for

(appendix, section 1, {76) end (78) and € =

@)
S ARPE

vicinity of n4 =
smell 7, (x1)

@ll—-‘

-1, Qo 55)

ce)w 2 ——“*SL

L

2

flo

—3 L4
No=1
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These approximations for 1n_. valid near unity are also shown in
figure 7 and it is seen tha% even small departures from Mg = 1

are accompanied by perceptible differences in the values of the
functions. An exact calculation therefore requires the uss of
the interpoletion curves of the exact values even for small 1 o’
But if only a rough estimate 1s roquired n, can be set equal

to unity in the additional term of the second approximation
except in Qo, and the asymptotic representation of tho

derived sums

—(1) 8 —(2)
EYARCEXE R TS (0"

may be applied. In this case the expression Tor the maximum
velocity at the ellipsoid can be simplified. Inserting (50')
in (43) givos at t = 0, for the derivatives of the contribu-
tions of the stream function the asymptotically valid limiting
curves (fig. 1)

2 2 2)/ 2
v, B, 5l 2qg - kv, fom o2 w10, =5 (0
/

For 1, near unity the following developments are valid

2 b
1 /<X (XY, L, 1/

o2 (2 (e

Qos%ln(%l;)a '(fezln?ﬁ+ . v

Inserting these expressions in (46) one notices that only the
term of the lowest order needs to be considered in the parenthesis

because the entire bracket is already proportional to ﬁf\h’
s
Therefore M, DMay be set equal to 1 everywhere in the bracket

with exception of the terms Q¥ 1n "E‘%; one thus obtains up to
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L
the terms of the order > £x s for the increase of velocity

in the center of the ellipsoid, with M2 Mot = p2 - 1

o ,%*e[lsu(u)J(l-l—a(ﬁf-m%%j
1+ 3(2) - (2)m 2
i [e+u2(1+w£>]<l-2ln%”“2§%>
(“,@Mm }_m/ ._n/
(2 2 %-(ﬁ)m a3
mgw 2o enn -]

= ex2f{1n 2 . 1)+ (21n2-2£-1ng‘-l--l‘-
2u® ¢t E

e*

sl 24,2 .
+5-*—[2(u2-1)1n%--27(u2-1)+“——(!‘——-——11(1+n ME)]
2.2 2 co
hence
“.l) 2u _ i 2

.-%_Le+3+|£.(&§.-_ll(l+an2)‘ (52)
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III. SUMMARY

(2) The effoct of comproseibility on the exially symmetrical

flow around an ellipsold was determined by camputing the moximum
*

veloclties as function of the Mach number Mw° = _U__ (&m = volocity
of sound at free-streom velocity U¥) in second approximation for
ellipsoids of varlious thicknesses. The valucs obtaincd arc comparcd
with the values of tho first approximation which arc obtoined by
computing the incompressible velocity values for a slender ellipsold
of thickness ratio % = \/l - f % (a* = thickness of ellipsoid
in compressible flow) by the Prandtl-Gothert rule (reference 1)
and. the result 1s multipllied by the squore of the factor

(TP R — 'é opposed to the Initial disbortion.
i1 =

For small thicknesses (—— < 0. 1) tho second approximaotion

almost coincides with the Prandtl uzgroxim‘,cion, cnd the
differences are still small up to 0.3 {exror $ 5 percent

of disturbance velocity at Mm = 0. 8 (fig. 2).

(b) A comparison with the maximum velocitics for the ephere,
celculated by Luamla with the fourth approximetion of the Rayleigh
method lndicates that even in this extreme case the departures
even of the second approximetion are not apprecicble (error
¥ 2.5 percent of the disturbence velocity at M = 0.5). Thus
the second afproximation is still) emply eutisfa"%ory for thick

ellipsoids g—*<___ 0.5) (£ig. 3).
(c) The retios of the interference velocities

ulcompress./ ulincompresS‘ Dnd. Of the tOtQJ. V‘eloci'bies
Yeompress. / Wincompress. &Ye represented in diogrems (figs. U

and 6) for the point of meximum thickness. The velocitles of
the second approximction celculated here can be obtained Girectly
by these dlagrems, if the incompressible volues aro teken from
figure 8.

() Developing the first and second approximation for the
neximm velocities in powers of the thickness ratio (the Jogarithmic

quantity 1ln i—‘? being regarded as of the order of megnitude of
unity) gives expresaions of first end second appiroximations
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asymptotically valid for small thickness, depending upon whether

#\ 2
only terms proportionol to (%—) or also those nroporilonal

# *
to (%— are included. For small thicknesses (%-§ 0.2)

the second approximation can be replaced by the clearer
agymptotic expression wlthout introducing on appreciable ervor.
In this manner simpler formulas for the veloclty ratlos of
compressible to incompressible flow are obtained. In first
approximation one obtains for the location of maximum thickness

“logmpress.  _, , 1o
Y} inccmpress. in 2 -1

and

u . f 3%\2
compress =1+ %_) 1n
Y neompress.

IV. APPENDIX

Auxiliary Colculations

(a) Tronsformetion to elliptic coordinates.- The trans-
formation (6

Ccsay T = B8

with

o = k cosh ¢ B =X sinh & ¥y =co8 8 6 =gin o
G2-ﬁ2=k2 720621-.-1
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gives bocause of the Cauchy-Riemenn differential cequations

0f =Tg = B, 0g = ~Tg= -aB, Og¢ - TeZ = “Jgp = O7,Tgr = Oog
= -Tgg = BB

Conversely with

D= p2y2 + a%82 = p2 + k282 e o2 - K22

‘E"oc =§o§§, +§oee°. = i’% (D - 2[32) %Z + %25- (D - 2@2) ;g_é

T0 TT

,g£<72-52+2M>,9 - -E
2 D
Sq1 =§a§§1'"'§0691 ’%22 (D - 252) %’§'+g-2' (D - 262) %Z

o 2 42
{)E(a + 6% - T )= arr = ey,
For the strecm function, then

Yo = \y§§, + Vg8, =% (B7Vg - adlg); V. = §§T+ Vebr =% (e + Brg)
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and
Yoo = N’éég’ o +‘!’§,eea) Sq +W§§ac + (‘I’eg%"' ‘Veeeo)ec * Vel

252 - B272>

l .
= ?)E‘_‘:Véé 3272 +’¢feea.262 - 2\kéea.ﬁ75 +W§ocﬁ <72 - 82 +

D

2,2
- Ygrs Gr? v B® - h_a_ﬁg_)j‘

‘,IO'T =(\If§§§7 +\V‘S’ eeT)S.;O' +W§§GT + (weééT-P‘{,eeeT)ec + \I-’eea'r
252 - 2a2
202 _ 2]
+ Ygab 72-52+2—____.E.2.L“5D )‘J
The left s:t.de1 of the differentiel equation (3!} thus becomes since
Voo + Vo7 = 5 (‘VEE + \pee)
2) . 4 o) - 24.(2) - 7y (D)
B = Loy (2) wyge@) - Su® -2y (2))

while
q/(l) = KB%62 (& In &tk _ ok \p . __-u/e
¢ ek g2 L-S S

2(53)

(54)
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must be inserted on the right-hand side of (34), so that

aﬁ\llgm = Kp28° <a2 1n &2 Eak) yap ) = K7262<321n§=—1_'—§- - 2ak>

(1Y _ 2s2 (a2 . a2 Ttk | el
"’gg K8 L(a + 6°) In 5 lmj

‘Vee(l) = k(72 - 82) Qaz In LK - 2@)

+
¢ -k

\llge(l) = K75 (2:!431:& otk 2;[39
Inserted in (53) one obtaine
‘puo(l) = %’5{5252 in %i_-‘% [(0.2 + B2)7y° 4+ (72 - 82)a® - Lue2y2

2e2 _ 42,2 , 202,20
+ d?(72 - 8°) + Qaea'—a——-D—LZ— - 72(cR + p?) +.1L-—&-LG'D .,

- 2was® iaszre + (72 - 88)a? - 4p2y2 4 §2(52 - 67)

282 _ p2.2 2
+ 2B29—§—_D_El_ - 72(a,2+ 32) o+ l;.a-'.e_%_f_‘}
Il

2 -
= & opas?(p + 3p2 - hatp
D® : D
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waT(l) =_I‘§§{a{3781n %—"—:—% [:82(052 + 82) - B2(72 - 8%) + 2(p2R - oP8?)

- 2KpYd L%QGE - 62(72 - 8%) + 2(p2r2 - oP62) + 8%(c? + B9)

1
2:2 2 2
] 59_2%_@__ + B2 - 82) + 202 Lg?.%ué A

242
=-§2-2k576Q)+2a.2+62--h9‘5&-)

vl ok @tk Vol k3
T p OBk 20:1:), T =253 B

The thus obtalned expressions cenh be immedietely transformed into
elliptic coordinates. There is:

2
.12_.,1,2-;2- sinceg‘=n,7=§,and§=v|2-l'5=l-§2
k4 k k2
Now, since
= E" s - .\p '—""!! 'LE %
Ve =V i Vo = VPity =V SV %

\!’ee ﬂ‘l’ggﬁe - W;?

The left side of the differentiel equation becomes

——

2 __ 2 |2 i |
e - ¥2(n2 - £2) _("2 Py + (1 §2N’£§J
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and the expressions on the right-hand slde ere

Vit K2k |

N —— - t2 2 _¢2 2 _
D=7 Vige = P - (82 on(1 - t2) {42 -8% + 3(n2 - 1)

-

&ﬁ(f__uJ [(ne-;e)lnn_t.l_-eﬂ

n2-§2 n -1
¥y, A K2ic2 20 _ 42 -32 - £
p Yo (‘1},9 - zum)= g (1-t¢ )‘."2 >

+2E}2-§2+2n2+q2-1-&n3é32_.§:§l)_]|(
"2 -

Thug the differantial equation reads:

TG I LTI C IR PR & e
o §§ 0'12 (ng - gg)

/Lua(ﬁ +1) - & - 15_1‘ Ela - 62 4 3(3% - 1)

--—’143———)-1‘222'32““ l(na-te)nlnn—*f-;-mz‘
Ui Gl I n-d =

2
+ 2;2
G

(v) Developmenks in spherdicgal functions and converegence
studies for the series.- To obtaln the develo.ment of

2.
-lnﬂ____;_ at 1 =1
112-;2

in 8 series of the form

(==}

V= L a1 - £2) 2 (0 (2 - 1) o t(E)
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multiply
1,2 = 1

-ln

with P,'(%) (where Bp = Ap(y.2 - 1)Q,'(ny)) one then obtains,
owing to '
ngdn

/ (1 - §2)° ''Pp' dl = ——LQ—'"——]-') (reference 5)

Zn+1 7
for the series coefficiente by partial integration
1 ‘l n 2 -1
Bn = - i Pn'(g) in 2 d.§
_ 2nn+1L/_:L ﬂ°2'§2
4] n = 2n'

211/‘1 ;,"g'fgzdg” (o) iy R =+l

Ag for

Lt pty b o2 [t 4

Qu(z) =2J-l Pn(t) z___Q_L:,a‘/‘:l Pr(-0) z +

_1\R+1
_(._1221__‘/- P (L) —$—§ reference 5)
11 s

d 1
A/-1 P (L) :ég:—?e' =5

0 n even

1
1.1
. Fa(t) (E":_f m) at = 2q,(2)n odd (56)

Hence the required homogeneous solution which has the desired
value for 1 = M, 18
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v —(1) R bn' + 3 Qi1 {no)
2 T 1
y = iﬁ:o (2n" + 1)(2n’ + 2) (.qoe - l§Q52:f+1 (n0)
A1 - E5Ppp0, (O)(® - Vagyry(1) — -ln ——3 (57)
=1, no- = ¢
] 2 1‘3
To obtain the further development of (1 - (<) 2--———{5)— the
n -
homogeneous solution 1 J-——L- is represented by a series that

2 . (2

must converge for all 1§ > 1:

D_LL;E_El = An*(l - £2)p, (O (n2 - 1)g,'(n)
¢2

n2

For n = n, follows

no(l - ga) v
—_— =y

2 TL B,*(1 - 22 '(¢)

with
B ¥ = A*(n ® - 1), '(n,)

and as before, the cosfficients follow by partial integration as

i1l 2
2n + 1 / r(g).__"g

2n(n + 1) ’]0 -2
on 41 51 2§(n - 1)
= 2n'

o n
|

= 1 S (16° - 0 (o)

2n' + 1
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By (56), integration with respect to 2z gives

1 g g ' 0 n even
f ('t') (22 -12)2 JL -Q,'(2z) n odd (58)

1

Hence for all n 2> 1 the series develorment

a(l =123 _ ST s

n2 -2 [n—;a (en' + 1)(2n' + 2)
(1 - £ 50,0 (0) (0 - 2)Q'y () (59)

is valid. Silnce

%’a [(-fle - 1)Q'2n|+13 = 2(n' + 1}(2n' + l)%nl_,,l

1t follows by differentiation which is pormissible for 17 2 o
that

2 .2 2(;[_'_-752) . ' P!
e ST -Z‘;“‘“ 3 - £8)20, 1 (B ()

(€0)

For n =7, there follows multiplicetion with 7, from (60) end
subtraction of (59),

131 -3 = 1 %
(: 2 . §2) ) 5 (2n' +rl).€2:’z + 2) - g2)Pl2n-|.1(£)
o

—

[o%nraa (o) (20’ + 2)(20" 4 2) = (12 - L'pu,y (n)

+



On the other hand the following developmment is to be valid

130 - A | I 2 . 1)g 5 - 2yp.!
e .};n;;.ﬂu 22" 0, (O (12 = Vg, (n) Zojsﬁ*(l Bp () (6

By comparison of the coefficlents ome therefore obtains owing to the Legendre differ-
ential equation (referemce 5)

Tloan'+1(’10) (&li + 1)(‘2ni + 2) = anogqvianl_'_l(‘nQ) + no(noz - 1)Q"2n|+1(“0)

s 1 bn'! + 3 (n2 + 1)Q'p1,3(n0) + 11c:("ln2 " l)Q"En'+l(“o)

A o
en'+l 2 (2n' + 1)(2n' + 2) (n2 ~ 10 (n )
\'.o whe J en + . |°'

This development can also be secured directly by starting from (6L} mltiplying by Pn'(g)
and integrating over ¢{. The integrel on the left-hand side

[1 'q03(1 - ;2) .
EERTITL

-

gives after partiel integration

i1 1
2bn.3 by 3(ng2 - 1)
P, o+ P_ d
11 (ne2 - ¢2)2 f 2 - 33 o

p(62)

€EST "ON WD YIUN

EL
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and these intcgrals can be oxpressed according to (58) by the
fierivative of Qu(z). By differentiation for n = 2n' + 1,

(58) gives

-

’ '3 ! b? |
Q,(2) = -/- ¢e, (L) L(zz—ge)a - 7 fge)%_ at (€3)

i l
hence
B _2-2—1(19:1{;)- = 2"02%' - (g8 - 1qp" + ag(ne2 - 1)Qy"

thus the relation (62) is obtained. Adding the series (59) and
dividing the series (61) by -2 for arbitrary 7 one finelly
obtains

<]

v =3 -2 + ) bn + 3 16%p41 o)
LA 2 2 . [}
5 (ng? = 1)Q'5,,5 (no)

5 2 ne -2
2 2 n03(l - £2)
(2 -892 1 (8) (0% - 2)a', . (n) r;nz 2 - 52 (€4)

=1
Whether the obtained series ) (1) and ‘.——(2) actually attain

y J—
the values given in (57) and (64) must be mroved by sbsolute
g.nd ?ni.fom convergenco. Differentiation by teirms gives the
—— l —o—y 2
L. emd %;5._( )
convergence of which must also be proved. It is seen that
the (1) series differ frem the (2) series only by the fact that

neoded for the velocities in (43), the

(2)
on
@ . (2n + 1)(2n + 2) < %

a (2)

is valid for the nth term oy. Therefore only the convergence
for the (2) series needs to be proved. To this end, the spherical
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functions are to be estimated first. From the integral representa-
tion for Qu(2) (reference 5) there follows:

1 1 (1-12)"
%(Z)’Ezﬁfl t—.__t')%;idt

1 1(a-8)2 z-4 n
z —— 1+ t)" at
2n+lL . (2 - £)® (2 - £)2 (

\n
(-t z-i-l2 at
2 (z -~ t)

Putting
1-%t,., gu _ __zg -1
- 2 -t at (z - )2
- and
(t:z\) Z+12dt=_.§_-_lvndu
(z - ¢)
glven
n+l /-1 n
l l l / t 2 1
n z ln+lkz t/ 2+ 1) (z+1)(z - 1)

end in addition

(z - £)°

(22 - 1)q,"(z) -1‘———/ Q-5 at { €6)
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For,from the differential equation of the svherical functions
there follows by integration

2 s 2 ' nO
(no° - L)ap'(ny) %‘é‘i‘f"l (o™ - 1)Qy'(ny) + L =nfn + 1)f Qulz) dz
' -1

on+l J-l (z - t)0+L

Mo 1 re-ie !
=nn+f f 289 4o
1
11
aﬂ—u (l-tQ)n[( 1 - i dt
-1

o+l 1 - t)n (Tl - t)n
ep-nzd (1-e2Y
L -1 \lo - t

hence

: nl n
2 1ot e ntl (x -3 .
I(z )y (z)! vl B e (z -~ t) at

> (a+ 1)(z - 2)q,(z2) (6T}
end finally, since l?n(g);gzﬁ at £ <1
(1 -t3 ’Pn|(§); =P, -lP)< n QPn_li + qpno <2n  (€8)

Observing that z = 1 in the donaminetor in the integral {66) s hence
that

PR s |
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it is seen to be sufficlent to prove the convergence of s o_(2)

for 1 = n,- The same holds true for the series 5—}—
from the integral representation of @, there ;ollows corres~

pondingly

Q2n+l(ﬂ)

<1lforng> 7
%ne1(n0) °

Therefore, only the series

5—12)

(’-I-n + 3)Q2n+l('}o)(l - ;2)_"21»1+J,(-t') =_>__an

and

L%ﬁ Z(e)} — >~_ (2n + 1)(2n + 2){kn + 3)
o

Q22n+l(“o) —
- (1-£22, () =}
('102 - gl)Q'Qnﬂ,(’io) 2n+l LAn

needs to be analyzed. From (65) and (68) there follows with

niliq<1fw ne > 1
o
Jon |< 2 ._11.1.3 Q®™h b 2(2n + 1)< g (20 4+ )L

2
Hence L( ) is thus uniformly and absolutely convergent for
|§[ <1 and nZ > Nos because a converging comharative series

with greater members can be given. Correspondingly owing to
(67) and (68)
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(Cn + 2)(2n + 2)(4n + 3)
(2n + 2)(11o - 1)

|4n| < Qe (Mo (T - LB, (0)
q2n+l

1
ot 2 (n, - e 2(2n + 1)

< (2n + 1)(bn + 3)

Hence

(A< g (en ¢ 3)(en 4 2) P

(n, - 1)2

The comperative series however comvniges swith certainty, as second
derivative of a power series for q < 1; thus the absolute and

—(2
uniform convergence of gﬁ }__ itself is proved.

(c) Calculation of the spherical functions Q,(z) for the
erguments [z >3 and n > 10 by means of a hymermecmetric
series.- For z > 1 the integral representation

2,

(G -
Q(2) a/ (z +2% - 1 cosh -3)'11'3' ad (69)
t.Q

is appliceble. Introduction of a new veriable X by

(z + "/z2 -1 cosh%) (z - \/z2 -~ 1 cosh X) = 1

go that

%j-?cz+ \/zg-lcosh$

gives

X0
- 2. 2 o L z + 1
Q(2) z/; (z V2% = 1 cosh X)_ X with X, = 3 1n 3
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Through the substitution h = z - /22 - 1 cosh X
21/ n 1/ - i
Qn(z)z/ ! ah./ hn(l-h)‘.)2<-%)2dh
Jo

Y \/1-2hz+h2

with

k=z+\/22-l %zz- z2-l

Putting h = %(l - ®) the integral representation of & hyper-
geonetric series reads
1l

1 .1 V-1
) = » 2 (l - Ub)né - = )2 ﬁ:-Lv
(e L/O 1 -3 anp2 - )

2x 4. ..2n 121
=2 . 11,
3IX5.. 2n.+l xn‘/kﬁ FQ’z’n*'

1

=) ™

where F 1ndicates & hypergecmetric series with the variable
A=E

1 S 1 :
Fla,B.yy——m——r = —r ....._.___
() Ay \/l - Ez) T ap' (l - "2'2)}1 7 ~ lo l - 22

J Mo DIBBE L) T
7(y + 1)2! 1 - 32 )

o] 33

+a,or.+l o+ n + 1 + 1N 1

7§y +1). .. {7y +n)(n+ 1)} (1 - 22)n+1 +. o (T1)

where Qn(no) is replaced in the series by % = 1 + \/1'102 - 1.

It converges for % ~ 1> 0, 1.2 > 9/8. This series converges
very quickly for greater n and not too smell Mo The Q,(n,)
with n >10 eare readily computable by this formula, for

< 10 the recursion is proferable.
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The coefficlents of the series

o, = (1x3...[2(-1) +3}2
(n+.23)(n+2§).,.(n+29_..2t_l)22"p.'

are computed by recurgion for n=1,2 . . . 19 and
#=2x2...7 There is
%+l =% By
with
(2u + 1)°

= (20 +2)(2u + 2 +2n + 1)

1233

(72)

The obtained numerical velues are given in Table 2% along

with the factors of the series for different =n

2><l"'102n _21'1-!-1
ot TS E e At Y
for n=1. .. 19(table 3}
TABLE 3

FACTORS FOR THE SPHERICAL FUNCTIONS @ (=)

n an n An
1 1.333 333 333 11 0.517 019 481
2 1.066 666 667 12 -196 338 702
3 <91k 285 71k | 13 LhT7 955 78T
i 812 698 h12 1k L6l 4Th 553
5. .T38 816 738 | 15 cLl6 588 277
6 <681 984 681 16 433 055 299
7 .636 519 036 17 120 682 290
8 599 076 740 | 18 109 312 499
9 .567 546 386 19 .398 817 307
10 540 520 367 o

(73)

- -
Table 2 may be found at the end of the text,



(a )Asygg,otic sunmeation of the series epproximation curves.- To bo a2ble to indicate
(l) > \——(2)
approximation curves for Eﬁ / ond that pass through the computed pointa

'
as closely as possible the limiting valuee for n,—>1 and 7,— * mst be established
first.

To thia purpose congsider the series) at 7 =1, (see aquation 42)
l(_2") . Y \ a1y . PN
=) Un v 3G (g1 - £5) Plo5(8)
=N,
1~ - l -
= 2.2 §22 2 lé - (n.2 teg 5 (ng” + ) )
(n 22 12-¢ (2-@
> v
The derivative of the firpt serles gﬁ [ 1s written
3\ ‘1’/ 3 N, +1 %1 (n0)
=} 1} + -— -2 - !
(1)
so that
L (o) )
N o + 1 =T
ng=l gy h':' 1 (1]02 - l)Qn'(Tlo)

€£2T ‘ON WL wOvi

18
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since

2+ 1 _

Q(z) = 3 By(z) In &2 -2 (2)

with
fn_l(z) = ?-?-i—l Pn_l(z) + 3—%}—-;% n-3(z) ——(*—'-'—%- - 5(2) + .

hence

(22 - 1)Q,'(z) = -2 (2) + (22 - 1) [2 Py'(2) 1n ; :lL f::a—l]

and 1 - ,..._..253_1____;
z +
) Qn(;) .- f®) In z-1 S-1
+ 1 - t :
RS GRS C 1-(z-1)--'(z) ZEd g

2"’() z -1 n-1

£ is a polynomial of the (n - l)th degree in z, hence finite

n-l

Pa(1) = 13 1o 252 —ao(s® - 1) In 25530

z-l -1

Thus the series (75) can be reduced to the series (T4) multiplied
1

n, +
by%‘-lno

N, =1



1im 1im ]
(1) 1.t Lm
1.=1 [%r;'"“" j|fl"ﬂ o 1 =1 (-rl 2. §2)2 (noa + ;2) Qo—g—:) - - 9';92 ﬁ
=] O fo) Tlo Tlo E
=t
1 1 93 1) =

N T ' = (76)
ny7L % %, Op Z / znno ;;:1 g

.___.

The corresponding asymptotic expression for the other series is obtained by differentiation
of ('7’.]..‘ with respect to

respect to 7
EX b ] =) (i + 302, (16h(1 = By, (8)
=,
[ il |
= (l - §2) qu(nq‘? - ga) - (TIOQ;' ge) lmo = (1 - ge) -2“0('102 + 3;2)
(nt - £8)° (n 2 - t2)3

2
This derirvative ip also unifarmly convergent, since i (2) converges like: the derivative
=M,

of a power series. Multiplication by (n,2 - 1) followed by ancther &ifferentiation
glves sgain a wndformly convergent serles

£Q



- Iz‘-f_—(hn+3)(2n+l)(2n+ 2)Qpp.a(ne) (1 - 892!, ®
"o |G |
(—2'(1—-?5)'; L(qoh- + 3C2)(11 2) - 32(n? + 321 -
2 _ 4 |
+l2§2H2(ﬂ2‘lﬂ—%219—— (17
o Q l §==0 -qoll- \
As Q2n+l(n o) < ll211-l-l 5 i - ]: T the convergence 1s aguin readlly apparemt. For the

term of the series we get

a* < g (20 + W (20 + 3)(2n + 2) PH

The desired serles reads then

e +1
27/ L] e en e 0(en + 2apyylng) Fin 21T

/n—n ° ?’

- Q2n+]£‘]0) (1 - CE)P' (€) ’

1 lnﬂg__}. (n, Q. _{n,) i :

> T, - 1 -9 en+l o g

L




and owing to (7T7)

~— N, + 1 2
L] IR S bl oy
m[‘é;r}_ e lirlalnno_l(
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These curves actuelly have the given values ITor Mo ™ 1 but
the limiting values also coincide for n e Because for

N>« due to (70) ‘z"ax—aano and F->1

nozm T!°=®

Yps1 (10} —> Aonsy on+2 (no® - 1)e

2n+l
M=o )

‘10 1
={2n + 1 - —> (2n + 1) {A — A
(2n + )(noq'é'n-bl an) a ( ) ( en+l k2n+2 2n l2n+1)
) o0

1 kn + 3
( Mo \2n+2 <n° bn + 2 n°)

= (2n * 1)@y ,q 1, - (en+2)

2n + 1
¢® 1 1
thus 2ntl —— - 2:]‘ ) A2n + 1 " - £(n) .
2 + 2 -+ 12y
(02 = Datynyy n=e o' x noet3
It n°2 >>1 the second term in the series is already small
compared to the first and it suffices to consider the first
(n = 0):
" Cons ' LY N §
(4n + 3) > P 2n+l(o) "":9 -3 5'1'.)"'23‘ ("2 )2 = » 3
(rlo - 1)Q'2n+1 M= 0 o Mg
n=0
Since moreover, Qo —_— ;‘3‘- ono obtains for € = O
Ng=te ‘©
d \-(1)
on/_ N 1 (80)
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The terms of the other series merely diffe:r by the Tactor
(2n + 1)(2n + 2), that ie for n =0

d TL‘_(?)
L =
QW /1=, '_1;;_"?- i (e

Translated by J. Vander
National Advisory Compittee
for Aercmautics



NACA T™M No. 1233

REFERENCES

. Glthert, B.: Ebene und r¥umliche Strimung bei hohen

Schallgeschwindigkeiten (Erweiterung der ®randtlschen Regel).
Bericht 127 der Lilienthal-Gesellschaft, Tagung 3. Sept. 1940,
(also evailable as NACA TM No. 1105).

Lamla, E.: Die symmetrische Potentialstrtdmun; eines kompressiblen
Gases wm Kreiszylinder und Kugel im unteirk:itischen Gebiet,
Forschungsbericht Nr., 1014, 1939,

Busemanp: Der KompressibilitBtseinfluss fiir dinne wenig
gekrimmte Profile.. Lecture, April 4, 1940, Deutsche Akademie
der Luftfalrtforschung, Heft 19,

. Lamb: Eydrodynamik 1931, ps104.

Jehnke - Emde: Funktionentafeln 1938, p. 115, p. 116.

Hobson: Spherical and Ellipsoidel Harmonics, Cambridge 1931,
pp. 64-66.

- Hantzsche und Wendt: Der Kompressibilitdtselniluss fiir diinne,

wenig gekrimmte Profile bei Unterschallpeschwindigkeit.
ZAMM 22 (1942), pp. 72-86.



TABLE 2

COEFFICIENTS FOR THE HYPFERGEOMETRIC SERTES TO COMPUTE THE SPHERICAL FUNCTIORS

o &, G %3 oy G5 % a

1 |{0.200000000 [0.032142857 |0 .014880952 |0 .008285985 |0.005162806 | 0.003470553 |0 .00246438%
2| 07142857L| -QLTB57143| 006764069 | 003186917 | .001LT20935| .001020751| .00064B522
3| .055555556| .011363636| 003642191 | 001487228 [ .000708620| .000376066| .0002161Th
4| .ohsushsls] 007867133 002185315 .000787356 | .000335662] .000161171] 000084590
5] .038461538 | .005769231| 001414027 | 000455838 | .000175823| .0000TT082| 000037220
6| .033333333| 004411765 | 000967492 | 000282185 | 000099378 | 000040082 +000017520
7] «029411765) 003482972 | 000691066 -000184034 | 000059627 | .000022263 | .000009269
8] .026315789| .002819549 | .000510788 | .000125143 | 000037543 | 000013054 | .000005083
9| .023809%2k | .002329193| .000388199| .000088064 | 000024597 | 000008001 | 000002927
10 | 021739130 .001956722 | .000301932 | 000063770 | .000016662 | 000005091 | 000001756
11| .020000000 | 001666667 | 000239464 | 000047313 | .000011613 | 000003346 000001092
12| .0185185191 001436782 | 000193116 000035843 | 000008295 | 000002261

13 01721L1379 001251390 | 000158004 | 000027651 | 000006053 | 000001565

1% | 016129032 | 001099707 | 000130918 | .000021672 | 000004501 | 000001107

15| .015151515| 000974026 | 000109688 | .00001T22T | 000003403 | 00000076

16 | 01428571k | .000868726:| 000092813 | 000013865 | 000002612 | 000000585

17| 01351351k | -.000T79626 | 000079230 | 000011286 | 000002031 | .000000436

18 | 012820513 [ 000703565 | 000068175 | 000009279 | -000001599 | 000000329

19 | .012195122 | .000638117 | -000059085 | .00000TT00 | 000001273
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thickness ratio dT* = ¥ for various Mach numbers M = —?— .
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Figure 4.- Ratio of the excessive velocity U =u - U* compressible
to incompressible, first and second approximation,
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Figure 5.- Cutout from figure 4: d*/t = ¢* = 0.2, Comparison with
the asymptotic values.
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